Dominating sets reconfiguration under token sliding

نویسندگان

چکیده

Let G be a graph and Ds Dt two dominating sets of size k. Does there exist sequence 〈D0=Ds,D1,…,Dℓ−1,Dℓ=Dt〉 such that Di+1 can obtained from Di by replacing one vertex with its neighbors? In this paper, we investigate the complexity decision problem. We first prove problem is PSPACE-complete, even when restricted to split, bipartite or bounded treewidth graphs. On other hand, it solved in polynomial time on dually chordal graphs (a superclass both trees interval graphs) cographs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconfiguration of Dominating Sets

We explore a reconfiguration version of the dominating set problem, where a dominating set in a graph G is a set S of vertices such that each vertex is either in S or has a neighbour in S. In a reconfiguration problem, the goal is to determine whether there exists a sequence of feasible solutions connecting given feasible solutions s and t such that each pair of consecutive solutions is adjacen...

متن کامل

Token Sliding on Chordal Graphs

Let I be an independent set of a graph G. Imagine that a token is located on any vertex of I . We can now move the tokens of I along the edges of the graph as long as the set of tokens still defines an independent set of G. Given two independent sets I and J , the TOKEN SLIDING problem consists in deciding whether there exists a sequence of independent sets which transforms I into J so that eve...

متن کامل

The Complexity of Dominating Set Reconfiguration

Suppose that we are given two dominating sets Ds and Dt of a graph G whose cardinalities are at most a given threshold k. Then, we are asked whether there exists a sequence of dominating sets of G between Ds and Dt such that each dominating set in the sequence is of cardinality at most k and can be obtained from the previous one by either adding or deleting exactly one vertex. This problem is k...

متن کامل

Connected Dominating Sets

PROBLEM DEFINITION Consider a graph G = (V,E). A subset C of V is called a dominating set if every vertex is either in C or adjacent to a vertex in C. If, furthermore, the subgraph induced by C is connected, then C is called a connected dominating set. A connected dominating set with a minimum cardinality is called a minimum connected dominating set (MCDS). Computing a MCDS is an NP-hard proble...

متن کامل

Clique-like Dominating Sets

Continuing work by B acso and Tuza and Cozzens and Kelleher, we investigate dominating sets which induce subgraphs with small clique covering number, or small independence number. We show that if a graph G is connected and contains no induced subgraph isomorphic to P6 or Ht (the graph obtained by subdividing each edge of K1;t; t 3), then G has a dominating set which induces a connected graph wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2021

ISSN: ['1872-6771', '0166-218X']

DOI: https://doi.org/10.1016/j.dam.2021.05.014